1,276 research outputs found

    Investigating the effect of rotational degree of freedom on a circular cylinder at low reynolds number in cross flow

    Get PDF
    Numerical simulations of Vortex-Induced Vibrations (VIV) of a circular cylinder in cross flow with a rotational degree of freedom about its axis have been carried out by means of a finite-volume method. The study is performed in two dimensions at a Reynolds number of Re D = 100, based on the free stream velocity and the diameter, D, of the cylinder. The effect of the rotational degree of freedom on the cylinder's lift and drag forces are compared with the baseline simulation results of flow around a stationary cylinder. The introduction of a rotational degree of freedom (d.o.f) is observed to cause the lift and drag forces to change. Also, the pattern of vortex shedding behind the cylinder is found to drastically change when the cylinder is allowed to rotate

    A comparative study of immersed-boundary interpolation methods for a flow around a stationary cylinder at low Reynolds number

    Get PDF
    The accuracy and computational efficiency of various interpolation methods for the implementation of non grid-confirming boundaries is assessed. The aim of the research is to select an interpolation method that is both efficient and sufficiently accurate to be used in the simulation of vortex induced vibration of the flow around a deformable cylinder. Results are presented of an immersed boundary implementation in which the velocities near nonconfirming boundaries were interpolated in the normal direction to the walls. The flow field is solved on a Cartesian grid using a finite volume method with a staggered variable arrangement. The Strouhal number and Drag coefficient for various cases are reported. The results show a good agreement with the literature. Also, the drag coefficient and Strouhal number results for five different interpolation methods were compared it was shown that for a stationary cylinder at low Reynolds number, the interpolation method could affect the drag coefficient by a maximum 2% and the Strouhal number by maximum of 3%. In addition, the bi-liner interpolation method took about 2% more computational time per vortex shedding cycle in companion to the other methods

    The Effect of wake Turbulence Intensity on Transition in a Compressor Cascade

    Get PDF
    Direct numerical simulations of separating flow along a section at midspan of a low-pressure V103 compressor cascade with periodically incoming wakes were performed. By varying the strength of the wake, its influence on both boundary layer separation and bypass transition were examined. Due to the presence of small-scale three-dimensional fluctuations in the wakes, the flow along the pressure surface undergoes bypass transition. Only in the weak-wake case, the boundary layer reaches a nearly-separated state between impinging wakes. In all simulations, the flow along the suction surface was found to separate. In the simulation with the strong wakes, separation is intermittently suppressed as the periodically passing wakes managed to trigger turbulent spots upstream of the location of separation. As these turbulent spots convect downstream, they locally suppress separation. © 2014 Springer Science+Business Media Dordrecht

    Direct numerical simulation of gas transfer across the air-water interface driven by buoyant convection

    Get PDF
    A series of direct numerical simulations of mass transfer across the air-water interface driven by buoyancy-induced convection has been carried out to elucidate the physical mechanisms that play a role in the transfer of heat and atmospheric gases. The buoyant instability is caused by the presence of a thin layer of cold water situated on top of a body of warm water. In time, heat and atmospheric gases diff use into the uppermost part of the thermal boundary layer and are subsequently transported down into the bulk by falling sheets and plumes of cold water. Using a specifically-designed numerical code for the discretization of scalar convection and diffusion, it was possible to accurately resolve this buoyant instability induced transport of atmospheric gases into the bulk at a realistic Prandtl number (Pr = 6) and Schmidt numbers ranging from Sc = 20 to Sc = 500. The simulations presented here provided a detailed insight into instantaneous gas transfer processes. The falling plumes with highly gas-saturated fluid in their core were found to penetrate deep inside the bulk. With an initial temperature difference between the water surface and the bulk of slightly above 2 K peaks in the instantaneous heat flux in excess of 1600 W/mÂČ were observed, proving the potential effectiveness of buoyant convective heat and gas transfer. Furthermore, the validity of the scaling law for the ratio of gas and heat transfer velocities K_L / H_L ∌ (Pr/Sc)^0:5 for the entire range of Schmidt numbers considered was confirmed. A good time-accurate approximation of K_L was found using surface information such as velocity fluctuations and convection cell size or surface divergence. A reasonable time-accuracy for the K_L estimation was obtained using the horizontal integral length scale and the root-mean-square of the horizontal velocity fluctuations in the upper part of the bulk.The German Research Foundation (DFG grant UH242/6-1). Additional funding by the Helmholtz Water Network

    Design of a new type of coating for the controlled release of heparin

    Get PDF
    Thrombus formation at the surface of blood contacting devices can be prevented by local release of heparin. Preferably, the release rate should be constant for prolonged periods of time. The minimum heparin release rate to achieve thromboresistance will be different for various applications and should therefore be adjustable. In this study a new type of heparin release system is presented which may be applied as a coating for blood contacting devices. The system is based on the covalent immobilization of heparin onto porous structures via hydrolysable bonds. This approach was evaluated by the immobilization of heparin onto a porous cellulosic substrate via ester bonds. Cuprophan was used as a model substrate and N,N¿-carbonyldiimidazole as a coupling agent. Heparinized Cuprophan incubated in phosphate buffered saline showed a release of heparin due to the hydrolysis of the ester bonds between heparin and Cuprophan. The release rate could be easily adjusted by varying the amount of coupling agent used during immobilization. Cuprophan with a rather stable heparin coating (release rate: 6.1 mU/cm2·h) and Cuprophan which shows a substantial release of heparin (release rate up to 23.0 mU/cm2·h) could be prepared. Except when the release was relatively high, release rates were constant for at least 1 week. Storage of the release system at ambient conditions up to 6 months or sterilization by means of steam, ethylene oxide exposure, or gamma irradiation did not affect the release properties. It was concluded that this concept for a heparin release system is highly promising to prepare thromboresistant surfaces for various blood contacting devices

    Direct numerical simulation of turbulent mass transfer at the surface of an open channel flow

    Get PDF
    We present direct numerical simulation results of turbulent open channel flow at bulk Reynolds numbers up to 12 000, coupled with (passive) scalar transport at Schmidt numbers up to 200. Care is taken to capture the very large-scale motions which appear already for relatively modest Reynolds numbers. The transfer velocity at the flat, free surface is found to scale with the Schmidt number to the power ‘ −1/2 ’, in accordance with previous studies and theoretical predictions for uncontaminated surfaces. The scaling of the transfer velocity with Reynolds number is found to vary, depending on the Reynolds number definition used. To compare the present results with those obtained in other systems, we define a turbulent Reynolds number at the edge of the surface-influenced layer. This allows us to probe the two-regime model of Theofanous et al. (Intl J. Heat Mass Transfer, vol. 19, 1976, pp. 613–624), which is found to correctly predict that small-scale vortices significantly affect the mass transfer for turbulent Reynolds numbers larger than 500. It is further established that the root mean square of the surface divergence is, on average, proportional to the mean transfer velocity. However, the spatial correlation between instantaneous surface divergence and transfer velocity tends to decrease with increasing Schmidt number and increase with increasing Reynolds number. The latter is shown to be caused by an enhancement of the correlation in high-speed regions, which in turn is linked to the spatial distribution of surface-parallel vortices
    • 

    corecore